Passive movements of the head do not abolish anticipatory firing properties of head direction cells.
نویسندگان
چکیده
Neurons in the anterior dorsal thalamic nucleus (ADN) of the rat selectively discharge in relation to the animal's head direction (HD) in the horizontal plane. Temporal analyses of cell firing properties reveal that their discharge is optimally correlated with the animal's future directional heading by approximately 24 ms. Among the hypotheses proposed to explain this property is that ADN HD cells are informed of future head movement via motor efference copy signals. One prediction of this hypothesis is that when the rat's head is moved passively, the anticipatory time interval (ATI) will be attenuated because the motor efference signal reflects only the active contribution to the movement. The present study tested this hypothesis by loosely restraining the animal and passively rotating it through the cell's preferred direction. Contrary to our prediction, we found that ATI values did not decrease during passive movement but in fact increased significantly. HD cells in the postsubiculum did not show the same effect, suggesting independence between the two sites with respect to anticipatory firing. We conclude that it is unlikely that a motor efference copy signal alone is responsible for generating anticipatory firing in ADN HD cells.
منابع مشابه
Anticipatory Firing Properties of Head Direction Cells Passive Movements of the Head Do Not Abolish
publishes original articles on the function of the nervous system. It is published 12 times a year Journal of Neurophysiology
متن کاملAnticipation in the rodent head direction system can be explained by an interaction of head movements and vestibular firing properties.
The rodent head-direction (HD) system, which codes for the animal's head direction in the horizontal plane, is thought to be critically involved in spatial navigation. Electrophysiological recording studies have shown that HD cells can anticipate the animal's HD by up to 75-80 ms. The origin of this anticipation is poorly understood. In this modeling study, we provide a novel explanation for HD...
متن کاملPeak firing rates of rat anterodorsal thalamic head direction cells are higher during faster passive rotations.
Head direction cells discharge selectively when the head of the animal is oriented in a specific direction. The goal of this study was to determine how sensory signals arising from passive rotations (e.g., triggered by vestibular stimulation and dynamic visual inputs) influence the responses of anterodorsal thalamic head direction cells in the absence of voluntary movement cues (e.g., motor com...
متن کاملContext contingent signal processing in the cerebellar flocculus and ventral paraflocculus during gaze saccades.
The vestibuloocular reflex (VOR) functions to stabilize gaze when the head moves. The flocculus region (FLR) of the cerebellar cortex, which includes the flocculus and ventral paraflocculus, plays an essential role in modifying signal processing in VOR pathways so that images of interest remain stable on the retina. In squirrel monkeys, the firing rate of most FLR Pk cells is modulated during V...
متن کاملAnticipatory time intervals of head-direction cells in the anterior thalamus of the rat: implications for path integration in the head-direction circuit.
Head-direction cells are neurons that signal a rat's directional heading in the horizontal plane. Head-direction cells in the anterior thalamus are anticipatory, so that their firing rate is better correlated with the rat's future head direction than with the present or past head direction. We recorded single-unit activity from head-direction cells in the anterior thalamus of freely moving rats...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2005